How many consultants on the day of a Go-Live (particularly in warehousing and manufacturing) can sit comfortably knowing there will be little or no operational impact with the IT system they have implemented? Despite all the testing efforts and hard work, no-one truly knows, and when a real-life operation is undertaken and managed by a new IT system, it can lead to difficulties that typical test execution may not capture.
Though some organisations perform Business Continuity Testing that would help minimise the risk of any such issues, this isn’t adopted throughout the industry, usually due to pressure of the project timeline and limited detailed business engagement. However, imagine being able to simulate and visualise the warehouse operations with real data and perform real transactions, to be able to understand this all ‘virtually’ in a 3D Digital Twin, during the testing phase prior to the live implementation of a complex new IT warehouse management system (WMS).
Example of a 3D warehouse model
This concept of a warehouse and production 3D Digital Twin can also be used to bring to life the warehouse solution well before the testing execution phase, enabling significant business engagement opportunities, as well as process, facility layout and operational benefits, such as:
Early solution understanding and digital demo capability
Improved operator training and business adoption
Warehouse operational optimisation enabling improved IT WMS solutions
Through adopting warehouse and production 3D Digital Twin, these are the real benefits you can expect to achieve:
Concerning the inbound process, for example, a warehouse manager may want to experience a new operating method, tweaking the existing steps, designing a new floor layout or completely changing the handling process for inbound products until the process is fully optimised and efficient. A multitude of design and modeling approaches are offered by simulation tools to support the managers in these design challenges.
All direct labour involved in the receiving, storing, packing and shipping activities, can be supported by these new 3D virtual modeling and simulation tools, including various types of equipment such as AGVs and conveyors. Therefore, in this case, for example, a complete end-to-end inbound process flow can be designed within the 3D Digital Twin. It can fully simulate warehouse operators unloading bulk boxes from containers, then using conveyors to convey the goods from the goods receipt zone to a palletizer machine and finally autonomous forklifts performing the final put away. By using an appropriate data set, the warehouse manager can, for example, measure the current processing time for the unloading of goods and accurately reallocate the resources based on their idle time and distance coverage.
Regarding indirect labour and supervisors, the new digital platform offers a plethora of dashboards to model and measure the current performance and provide options to further model and measure potential increases in process efficiency. In addition, trainers may use the 3D virtual digital warehouse to visualise and upskill the warehouse leaders and team operators, with respect to any new future layouts and procedures.
Within the outbound process, retailers are continually looking for the optimal picking process; by using the 3D virtual digital warehouse for example, they can optimise the picking process using carts with the correct number of trays that will be required to fulfill e-comm orders. Another major challenge that can be digitally modelled is the ability to optimise the exit capacity of the total sorting and packing work centre availability. All of these operational process design challenges can be represented in a 3D Digital Twin simulation tool to allow upfront design and analysis, and to provide a clear view of on how we can fine-tune operational parameters for a better more optimised result, ultimately reducing upfront capital and long term operational costs.